If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-23x-36=0
a = 5; b = -23; c = -36;
Δ = b2-4ac
Δ = -232-4·5·(-36)
Δ = 1249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{1249}}{2*5}=\frac{23-\sqrt{1249}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{1249}}{2*5}=\frac{23+\sqrt{1249}}{10} $
| 5(x+2)=-2{1-(3-x)} | | 64/x-8=4 | | (x-3)^2=8 | | -9z+9=4z^2 | | 5(x+2)=-2{1-(3-x} | | X+7.5x+90=360 | | 3^x+2=3^x+3^2 | | 2x-10=7x-15+5 | | 60x+1=40x | | -(4/x-8)=3 | | -50x+60=52 | | 8x^2+12x-360=0 | | 2x+29=3x | | -4/x-8=3 | | 10y+50=30 | | 24+2x=18+5x | | -5x+29=9 | | (b-8)/5=(b+7)/4 | | -5x29=9 | | X-61=-9x+9 | | 6x=2412/19 | | -14=4-2x | | 72-8x=64 | | 2-3=z | | x^2-√88x+22=0 | | 16+6.8n=10+7.1n | | 16t^2+30t-220=0 | | −8x^2−15x+2=0 | | 13r+6=5r | | 7t+-t-5=5+-3 | | (x+4)^4/3=16 | | −8x2−15x+2=0 |